ããžãã¹ã®æªæ¥ãå¡ãæ¿ããå¯èœæ§ãç§ããçæAIã¢ãã«ã§ããããã®ç䟡ãç解ã掻çšããããã®ç¥èãäžè¶³ããŠããã®ãçŸç¶ã§ããæ¬ã¬ã€ãã§ã¯ãçæAIã¢ãã«ã®åºæ¬ãããé²åãã圹å²ããããŠãã®æ§ã ãªå¿çšãŸã§ããæå¿«ã«è§£èª¬ããŸããæ¥çã«æ°é¢šãããããçæAIã®æåç·ããããžãã¹ããŒãœã³ã®çæ§ãšå ±ã«æ¢æ±ããŠåããŸãããã²ãã®æ©äŒã«ã次äžä»£ãã¯ãããžãŒã®æ žå¿ã«è§Šããæªæ¥ãžã®äžæ©ãèžã¿åºããŠãã ããã
1. çæAIã¢ãã«ã®ç解ãšå¿çš
çæAIã¢ãã«å ¥éïŒäœããããã®ãïŒ
çæAIã¢ãã«ã¯ãããŒã¿ãåæããŠæ°ããªæ å ±ãçã¿åºãæè¡ãæããŸãããããã®ã¢ãã«ã¯ãæ¢åã®ããŒã¿ãã¿ãŒã³ãåŠç¿ãããããåºã«æ°ããããŒã¿ã€ã³ã¹ã¿ã³ã¹ãçæããããšãå¯èœã§ããäžäŸãšããŠãããã¹ããç»åãé³æ¥œãªã©å€å²ã«ãããã³ã³ãã³ãã®åµé ã«å©çšãããŠããŸãã
ç¹ã«æ³šç®ãããŠããã®ã¯ããããã®ã¢ãã«ãæã€é¡äŒŒã®äœåãå¶äœããèœåã§ããç¬èªæ§æº¢ããåµäœç©ãããããããšã§ãå€ãã®ã¯ãªãšã€ãã£ãåéã«é©æ°ãäžãã€ã€ãããŸãããããããããã®æè¡ãã©ã®ããã«æ©èœããã®ããç解ããããšã¯ãå¿çšããããã®éèŠãªã¹ããããšãªããŸãã
çæAIã¢ãã«ã®äžçªã®é åã¯ãè€éãªããŒã¿ãå¿ èŠãšãããããžã§ã¯ãã§ãæéãæéãå€§å¹ ã«åæžã§ããç¹ã§ãã質ã®é«ãããŒã¿çæã«ãããå€ãã®ç 究ãããžãã¹ãé£èºçãªé²æ©ãéããããšãæåŸ ãããŠããŸãã
AIã®é²åãšçæã¢ãã«ã®åœ¹å²
AIæè¡ãæ¥ã é²åããäžãçæAIã¢ãã«ã¯ç¹ã«æ³šç®ãããååšã«ãªã£ãŠããŸãããããã®ã¢ãã«ã¯ãæ©æ¢°åŠç¿ã®äžéšãšããŠäººéã®åµé åãæš¡å£ããèªãæ°ããç¬åµçãªäœåãçã¿åºãåãæã£ãŠããŸããããã«ãããAIæè¡å šäœã®æœåšèœåã®æ¡å€§ã«å€§ããè²¢ç®ããŠããŸãã
çæAIã¯ãäŸãã°é¢šæ¯ããªããžã§ã¯ãã人ç©ã®é¡ãªã©ãå®åšããªãç»åãæ°ãã«äœãåºãããšãå¯èœã§ãããŸããèªç¶èšèªåŠçã«ãããŠã¯ããã¥ãŒã¹èšäºãç©èªãªã©ããªã¢ã«ãªããã¹ããçæããããšã§ãã³ã³ãã³ãäœæé åã«é©åœãèµ·ããå¯èœæ§ãç§ããŠããŸãã
ãã®æè¡ã®é²åã¯ãããŒã¿ã»ããããæ°ããåŸåãåŠã³åãããããå¿çšããèœåã«ãã£ãŠæšé²ãããŸããããããŠçæãããæ°ããªã³ã³ãã³ãã¯ãå®éã®ããŒã¿ã«åºã¥ããŠãããããçŸå®æããããä¿¡é Œæ§ã®ãããã®ã«ãªãåŸåããããŸãã
çæAIã¢ãã«ã®åºæ¬çãªçš®é¡ãšç¹åŸŽ
çæAIã¢ãã«ã«ã¯ãããŸããŸãªçš®é¡ãååšããŸãããã®äžã§ãã代衚çãªãã®ã«Generative Adversarial NetworksïŒGANsïŒãVariational AutoencodersïŒVAEsïŒãããã³LSTMãããã¯ãŒã¯ããããŸããåã¢ãã«ã¯ãç°ãªãã¢ã«ãŽãªãºã ãšç¹åŸŽãæã¡ãçšéã«å¿ããŠéžæãããŸãã
GANsã¯ãçæåšãšèå¥åšããæ§æããããäºãã«å¯ŸæããªããåŠç¿ãé²ããæ§é ãç¹åŸŽã§ããäžæ¹ãVAEsã¯å ¥åããŒã¿ãå§çž®ãããããããšã«æ°ããªããŒã¿ãçæããããšã«ç¹åããŠããŸããLSTMãããã¯ãŒã¯ã¯ç¹ã«æç³»åããŒã¿ã«åŒ·ããé³æ¥œãããã¹ããªã©ã®é£ç¶æ§ãæ±ããããã³ã³ãã³ãçæã«é©ããŠããŸãã
ãããã®ã¢ãã«ã¯ãããŒã¿ã®çš®é¡ãç®çã«ãã£ãŠãã®åŒ·ã¿ãçºæ®ããŸããé©åãªã¢ãã«ãéžæããããšã¯ãæåãžã®ç¬¬äžæ©ã§ãããšãšãã«ãç®çã«æ²¿ã£ãé«å質ãªåºåãåŸãããã«ã¯äžå¯æ¬ ã§ãã
çæã¢ãã«ãããããå¯èœæ§ãšéç
çæã¢ãã«ã¯ãå€å²ã«ãããåéã§é©æ°çãªå¯èœæ§ãç§ããŠããŸããèªååãããã¢ãŒãäœåã®å¶äœãå人ã®ãã©ã€ãã·ãŒã«é æ ®ããããŒã¿ã®çæãæè²è³æã®ã«ã¹ã¿ãã€ãºãªã©ããã®å¿çšç¯å²ã¯åºå€§ã§ãããããã®æè¡ãå©çšããããšã§ãæ°ããªäŸ¡å€åµé ãæåŸ ãããŠããŸãã
ãã ããçæã¢ãã«ã«ã¯éçãååšããŸããç¹ã«ãå¶åŸ¡ã§ããªãçæç©ããå®éã®ããŒã¿ã»ãããåæ ããããªãå 容ãçæããŠããŸãããšããããŸãããŸããå«ççãªåé¡ã倧ããªèª²é¡ãšãªã£ãŠããããã£ãŒããã§ã€ã¯ãªã©ãæªçšãããå¯èœæ§ãææãããŠããŸãã
çæAIã¢ãã«ãããã£ãŠã¯ãæè¡çãªç²ŸåºŠã®åäžãšãšãã«ç€ŸäŒçãªè°è«ãå¿ èŠã§ãããã®ãã©ã³ã¹ãèæ ®ããªãããæè¡ãé©åã«æŽ»çšããå©çãæ倧åãããšå ±ã«ããªã¹ã¯ãæå°éã«æããåªåãæ±ããããŠããã®ãçŸç¶ã§ãã
2. çæAIã¢ãã«ã®æŠèŠãšæŽå²
çæã¢ãã«ã®é²æ©ãšæŽå²çèæ¯
çæAIã¢ãã«ã¯ãããŒã¿ã®ååžãåŠç¿ããæ°ããªããŒã¿ãçæããã¢ã«ãŽãªãºã ã®ããšãæããŸãããã®åéã¯éå»æ°å幎ã«ããããã³ã³ãã¥ãŒã¿ããžã§ã³ãèªç¶èšèªåŠçãªã©å€å²ã«ãããå¿çšåéã«ãããŠå€§ããçºå±ããŠããŸãããåæã®çæã¢ãã«ã¯ã·ã³ãã«ãªçµ±èšçææ³ã«åºã¥ããŠãããçŸåšå©çšãããŠãã深局åŠç¿ããŒã¹ã®ã¢ãã«ãžãšé²åããŠããŸããã
深局åŠç¿ã«ããçæã¢ãã«ã¯ãå€å±€ã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã䜿ã£ãŠé«åºŠãªãã¿ãŒã³ãåŠç¿ããŸããããã«ãããå®éã®ããŒã¿ã«è¿ããé«å質ãªåæããŒã¿ã®çæãå¯èœã«ãªããŸãããæŽã«ã¯ãç¹å®ã®æ¡ä»¶äžã§ã®ããŒã¿çæãªã©ãããè€éãªã¿ã¹ã¯ã«ã察å¿ããŠããŸãã
倧ããªé²æ©ã®äžã€ãšããŠãæµå¯Ÿççæãããã¯ãŒã¯ïŒGANïŒã®ç»å ŽãæããããŸããçæåšãšèå¥åšã®äºã€ã®ãããã¯ãŒã¯ãäºãã«ç«¶ãåããªããåŠç¿ãé²ãããã®æ¹æ³ã¯ãçæã¢ãã«ã«ãããç»æçãªãã¬ã€ã¯ã¹ã«ãŒãšãªããŸããã
éèŠãªãã€ã«ã¹ããŒã³ãšãã®åœ±é¿
çæAIã®åéã«ãããéèŠãªãã€ã«ã¹ããŒã³ãšããŠã¯ã2014幎ã®GANã®ææ¡ããããŸããããã«ãããAIã«ããç»åçæãçŸå®çãªãã®ãšãªããå€ãã®ç 究ããã®æè¡ãåºã«é²ããããããã«ãªããŸãããGANã¯ä»¥éãå€æ°ã®ããªãšãŒã·ã§ã³ãéçºãããå質ã®åäžã«å¯äžããŠããŸããã
ãŸããå€åãªãŒããšã³ã³ãŒãïŒVAEïŒã®å°å ¥ããŸãéèŠãªé²å±ã§ããVAEã¯çæã¢ãã«ã«ç¢ºçè«çãªã¢ãããŒããåãå ¥ããããšã§ãæ°ããªãµã³ãã«ãçæããéã«å€åãæãããããšãå¯èœã«ããŸããã
ãããã®é²æ©ã¯ãåæã¡ãã£ã¢ã®å¶äœãããŒã¿æ¡åŒµãç°åžžæ€åºãªã©ãæ§ã ãªå¿çšåéã«å€§ããªåœ±é¿ãäžããŠãããŸããAIã®çæèœåã¯ä»ããã¯ãªãšã€ãã£ãç£æ¥ã«ãããæ°ããªããŒã«ãšããŠãèªèãããŠããŸãã
çæAIæè¡ã®çºå±ã«å¯äžããäž»èŠãªç 究
çæAIã¢ãã«ã®çºå±ã«ã¯å€ãã®ç 究è ã®è²¢ç®ããããŸãããç¹ã«ã€ã¢ã³ã»ã°ãããã§ããŒã«ããGANã®èæ¡ã¯ç¹çãã¹ããã®ã§ãããã®ã¢ãã«ã¯ä»¥åŸã®ç 究ã«å€å€§ãªåœ±é¿ãäžããŸããããŸãããã³ãžãªãã«ãã深局åŠç¿ã®ç 究ã¯ãçæã¢ãã«ã®èœåãæŒãäžããéèŠãªåºç€ãæäŸããŸããã
ããã«ããã£ãŒããã€ã³ãã®ç 究ããŒã ã¯ãçæã¢ãã«ã䜿ã£ãŠå¹ççã«åŠç¿ããææ³ãæ°å€ãææ¡ããå®è·µã«ãããçæAIã¢ãã«ã®å¹æçãªå©çšæ¹æ³ãéçºããŠããŸãã
ãããã®ç 究ã¯ãçæã¢ãã«ã®çè«çãªæ çµã¿ãæ§ç¯ãããšåæã«ãå®éã®å¿çšã«ãããŠãéèŠãªåœ¹å²ãæãããŠããŸããããªãŒãã³ãœãŒã¹åãããå€ãã®ãã¬ãŒã ã¯ãŒã¯ã¯ãäžçäžã®ç 究è ãããã«æ軜ã«çæAIæè¡ãé²åãããããã®ç°å¢ãæäŸããŠããŸãã
ä»åŸã®çæAIã¢ãã«ã®å±æ
çæAIã¢ãã«ã¯ãä»åŸããã«é²åãéããããšãæåŸ ãããŠããŸããç¹ã«ãçŸå®äžçã®åé¡è§£æ±ºã«ãããå¿çšç¯å²ãåºããããšã«æåŸ ãéãŸã£ãŠãããŸããäžäŸãæããã°ãè¬å€ã®ååèšèšããã·ãã¥ã¬ãŒã·ã§ã³ã«ããæ°åå€å解æãªã©ããããŸãã
ãŸããçæã¢ãã«ã®å«ççãªåŽé¢ã¯ãæªæ¥ã«ãããŠéèŠãªèª²é¡ãšãªãã§ãããããã£ãŒããã§ã€ã¯ã®ãããªæè¡ã«ä»£è¡šããããåœæ å ±ã®çæããã©ã€ãã·ãŒã®äŸµå®³ãšãã£ãåé¡ã«ãã©ã®ããã«ç«ã¡åãã£ãŠããã®ããè°è«ãããŸãã
æè¡ã®èª²é¡ãã¯ãªã¢ãã瀟äŒçãªå容ãåŸãã«ã¯ãçæAIã¢ãã«ã®éææ§ãšå¶åŸ¡ã®ç¢ºä¿ãéµãšãªããŸãããã®åéã®ç 究è ãšå®è·µè ã¯ãæè¡çãªé²æ©ã®ã¿ãªããããã®åœ±é¿ã瀟äŒã«ãšã£ãŠè¯ãæ¹åã«å°ãæ¹æ³ã暡玢ãç¶ããŠããå¿ èŠããããŸãã
3. çæAIã¢ãã«ã®æŽ»çšã·ããªãª
AIæè¡ãé²åãç¶ããäžã§ãçæAIã¢ãã«ãšããã®ã泚ç®ãéããŠããŸãããããã®ã¢ãã«ã¯ãããŒã¿ããåŠç¿ãç¬èªã®ã³ã³ãã³ããçã¿åºããèœåãæã£ãŠãããæ§ã ãªåéã§ã®å¿çšãå¯èœã§ããããžãã¹ãããšã³ã¿ãŒãã€ã¡ã³ããããã«ã¯æè²ã®çŸå ŽãŸã§ãçæAIã¯é©æ°çãªå±éãèŠããŠããŸãã
çæã¢ãã«ã®ããç¥ãããäŸã¯ãããã¹ããç»åãé³æ¥œãªã©ã®ããžã¿ã«ã³ã³ãã³ãã®èªåçæã§ããããã¯ãããŒã±ãã£ã³ã°è³æãã²ãŒã ã®ã¢ã»ããããããã¯ã«ã¹ã¿ã ææã®äœæãšãã£ãã¿ã¹ã¯ãèªååããã®ã«åœ¹ç«ã¡ãŸããAIã®é²åã¯æ¢ãŸãããšãªããåžžã«æ°ããå¯èœæ§ãéæããŠããŸãã
ãã®èšäºã§ã¯ãå ·äœçãªæŽ»çšäºäŸãèŠãŠãããçæAIã¢ãã«ãããããå€é©ãšãã®ããã³ã·ã£ã«ã«ã€ããŠæ¢æ±ããŸããããžãã¹ã®çŸå Žããæè²ã®åéãŸã§ãã©ã®ããã«ããŠçæAIã掻çšãããŠããã®ãã«çŠç¹ãåœãŠãŠãããŸãã
ããžãã¹ã§ã®çæAIã®æŽ»çšäºäŸ
ããžãã¹åéã§ã¯ãçæAIãã³ã³ãã³ãäœæã®æéççž®ãšã³ã¹ãåæžã«å¯äžããŠããŸããäŸãã°ãAIãçšããèªåèšäºäœæã¯ããã¥ãŒã¹ãµã€ããããã°éå¶ã«é©åœããããããŸãããAIãåéããããŒã¿ã«åºã¥ããŠèšäºãæ§æãã人éããã§ãã¯ããã ãã§é«å質ãªã³ã³ãã³ããå³åº§ã«åŸãããŸãã
ãŸããããŒã±ãã£ã³ã°è³æã®äœæãçæAIã®åŸæåéã§ããåºåæããœãŒã·ã£ã«ã¡ãã£ã¢ã®æçš¿ãããã¢ãŒã·ã§ã³çšã®ç»åãŸã§ãAIã¯ããŸããŸãªåœ¢åŒã®ã³ã³ãã³ãããªã¢ã«ã¿ã€ã ã§çæããããšãã§ãããã©ã³ãã®ã¡ãã»ãŒãžãäžè²«ããŠåŒ·åã«äŒããæ段ãšãªã£ãŠããŸãã
ããã«ãã«ã¹ã¿ããŒãµãŒãã¹ã«ãããŠããçæAIã¯åã ã®é¡§å®¢ã«åããã察å¿ãå¯èœã«ããŠããŸããFAQææžã®èªååãã顧客ããã®åãåããã«å¯ŸããããŒãœãã©ã€ãºãããã¬ã¹ãã³ã¹ã®çæã¯ã顧客æºè¶³åºŠãé«ããäžæ¹ã§ãéå¶ã³ã¹ãã®åæžã«ãç¹ãããŸãã
ãšã³ã¿ãŒãã€ã¡ã³ãç£æ¥ã«ãããå¿çš
ãšã³ã¿ãŒãã€ã¡ã³ãç£æ¥ã§ã¯ãçæAIãã¯ãªãšã€ãã£ããªããã»ã¹ããµããŒãããæ¹æ³ã泚ç®ãããŠããŸããé³æ¥œå¶äœã§ã¯ãAIãã¡ããã£ãããŒã¢ããŒããªãºã ãã¿ãŒã³ãçæããã¢ãŒãã£ã¹ããæ°ããæ²ãäœãéã®ã€ã³ã¹ãã¬ãŒã·ã§ã³ã«ãªã£ãŠããŸãã
æ ç»ããããªã²ãŒã ã®å¶äœã«ãããŠããAIã¯ç»å Žãããã£ã©ã¯ã¿ãŒãç°å¢ã®ãã¶ã€ã³ãçæããã¢ã·ã¹ã¿ã³ããšããŠåœ¹ç«ã£ãŠããŸããããã«ããããã¶ã€ããŒãã¢ãã¡ãŒã¿ãŒã¯ããè€éã§çŽ°éšã«ãããäœæ¥ã«æéãå²ãããšãå¯èœã«ãªããå šäœã®ãããã¯ã·ã§ã³ãã¹ããŒãã¢ããããŠããŸãã
å°èª¬ãèæ¬ã®å¶äœã«ãããŠããçæAIã¯ããããã®ã¢ã€ãã¢ãäŸçµŠããããç¹å®ã®ã·ããªãªã«åããããã€ã¢ãã°ãçã¿åºãã®ã«äœ¿ãããŠããŸããããã«ããäœå®¶ãã¡ã¯ã¯ãªãšã€ãã£ããããã¯ãæç Žããäœåã®å€æ§æ§ãé«ããŠããŸãã
æè²ãšãã¬ãŒãã³ã°ã«ãããçæã¢ãã«ã®å©çš
æè²åéã§ã¯ãçæAIãã«ã¹ã¿ãã€ãºå¯èœãªææã®äœæãæ¯æŽããŠããŸããåŠçã®åã ã®åŠç¿ã¹ã¿ã€ã«ãé²åºŠã«åãããŠèª¿æŽå¯èœãªææã¯ãããå¹æçãªåŠç¿äœéšãæäŸããããšãã§ããŸãã
ãã¬ãŒãã³ã°ã·ããªãªã§ã¯ãçæAIãçšããŠãªã¢ã«ãªåé¡è§£æ±ºã®ã·ãã¥ã¬ãŒã·ã§ã³ãã€ã³ã¿ã©ã¯ãã£ããªã±ãŒã¹ã¹ã¿ãã£ãåµåºããå®åã§çŽé¢ããã§ãããç¶æ³ã«å¯Ÿå¿ããèœåãé€ããŸããäŒæ¥ã®ç€Ÿå¡ç ä¿®ãªã©ã«ãããŠãããã®ã¢ãããŒãã¯åŠç¿å¹æãæ倧åããã®ã«åœ¹ç«ã£ãŠããŸãã
èšèªåŠç¿ã¢ããªã±ãŒã·ã§ã³ã«ãããŠããçæAIããã€ãããã¯ãªäŒè©±ç·Žç¿ãæäŸããŠããããŠãŒã¶ãŒãå®éã®äŒè©±ã«è¿ãæ¡ä»¶äžã§èšèªèœåãåäžãããããšãå¯èœã«ããŠããŸãã
ãã®ä»åµé çãªåéã§ã®å±é
çæAIã¯ã¢ãŒãã®åéã«ãé²åºããŠããŸããAIã«ãã£ãŠçæãããçµµç»ãããžã¿ã«ã¢ãŒãã¯ãèžè¡å®¶ãã¡ã«æ°ããªè¡šçŸææ³ãäžããŠããŸãããŸããæ¢åã®ã¢ãŒãã¯ãŒã¯ãåæããããã«è§Šçºããããªãªãžãã«ã®äœåãåµé ããããšãã§ããŸãã
ãã¡ãã·ã§ã³æ¥çã§ã¯ãAIããã¬ã³ãããŒã¿ãåæããæ°ãããã¶ã€ã³ãææ¡ããããšã§ããã¶ã€ããŒã®åµé çãªéçšããµããŒãããŠããŸããããã«ãããåžå Žã®éèŠã«å³å¿ããã³ã¬ã¯ã·ã§ã³ãã¹ããŒããæã£ãŠçã¿åºãããŠããŸãã
ã¢ãŒããã¯ãã£ãã€ã³ããªã¢ãã¶ã€ã³ã«ãããŠããçæAIã¯é©æ°çãªèŠçŽ ããããããŠããŸãã建ç¯å®¶ããã¶ã€ããŒã¯AIã䜿ã£ãŠç°å¢ã«æãããããããã¶ã€ã³æ¡ããå®çšæ§ãšçŸåŠãå Œãåãã空éãåµåºããã®ã«æŽ»çšããŠããŸãã
以äžã®äºäŸãèŠãã«ãçæAIã¢ãã«ã¯å¹ åºãç£æ¥çã§ãã®èœåãçºæ®ããŠãããæªæ¥ã®é©æ°çãªæè¡ãšããŠå€§ããªæåŸ ãå¯ããããŠããŸãããã®æè¡ã®ãããªãé²åãšãããéãåµé ã®æ°ããé åã«æ³šèŠããããšã¯ãä»åŸãéåžžã«éèŠã§ãã
4. çæAIã¢ãã«ã®æè¡çåŽé¢
AIæè¡ã¯ãããŸããŸãªç£æ¥ã§é©æ°ã®æ³¢ããããããŠããŸããçæAIã¢ãã«ã¯ããããã®æè¡ã®äžã€ã§ãããæ°ããããŒã¿ã®çç£ãå¯èœã«ããŠããŸãããããã®ã¢ãã«ãã©ã®ããã«æ©èœããäœãæãéããããã®ããæè¡çãªåŽé¢ããæ¢æ±ããŠã¿ãŸãããã
çæã¢ãã«ã¯ãæ¢åã®ããŒã¿ãåŠç¿ããæ°ããªããŒã¿ã€ã³ã¹ã¿ã³ã¹ãçæããèœåãåããŠããŸããããã«ã¯é«åºŠãªæ°åŠãšããã°ã©ãã³ã°ã®ç¥èãå¿ èŠã§ãé²è¡äžã®ç 究ãããããé²åã«åžžã«è¿œåŸããå¿ èŠããããŸãã
ãããã®æè¡ã¯ãæ¥åèªååããèžè¡çãªåµäœãŸã§ãç¡éã®å¿çšãå¯èœã§ããæ¬çš¿ã§ã¯ãçæAIã¢ãã«ã®èåŸã«ããæè¡çãªæ çµã¿ã«ã€ããŠæ·±ãæãäžããŠãããŸãã
çæAIæè¡ã®æ žå¿ããªãã¢ã«ãŽãªãºã
çæAIã¢ãã«ã¯ãGaussian Mixture ModelïŒGMMïŒãGenerative Adversarial NetworkïŒGANïŒãªã©ãå€çš®å€æ§ãªã¢ã«ãŽãªãºã ã«åºã¥ããŠããŸãããããã®ã¢ã«ãŽãªãºã ã¯ãããããç°ãªãåçãšç¹åŸŽãæã¡ãç¹å®ã®çš®é¡ã®åé¡ã«é©çšãããŸãã
ç¹ã«GANã¯çæAIã¢ãã«ã®åéã§æ³šç®ãéããŠããæè¡ã§ããGANã¯äºã€ã®ãããã¯ãŒã¯ãGeneratorãšDiscriminatorã競ãããããšã§ãé«åºŠã«ãªã¢ã«ãªããŒã¿ã®çæãå¯èœã«ããŸãããã®å調çãã€ç«¶äºçãªåŠç¿éçšããGANã®æ žå¿ã§ãã
ã¢ã«ãŽãªãºã ã®éžæã¯ãç®çãšããææç©ã«å€§ããäŸåããŸããé©åãªã¢ã«ãŽãªãºã ãéžã¶ããšã¯ãæãçµæãåŸãããã«äžå¯æ¬ ã§ãã
çæã¢ãã«ã®èšç·Žãšèª²é¡
çæAIã¢ãã«ã®èšç·Žã«ã¯èšå€§ãªæéãšãªãœãŒã¹ãå¿ èŠã§ããããã®éçšã«ã¯ããã€ãã®èª²é¡ãååšããŸãããŸããé©åãªããŒã¿ã»ããã®éžå®ãéèŠã§ãããé«å質ãªããŒã¿ãæ¬ ãããŸããã
次ã«ãã¢ãã«ã®ãªãŒããŒãã£ãããé¿ããããšãå¿ é ã§ããããã¯ã¢ãã«ãèšç·ŽããŒã¿ã«éå°ã«é©å¿ããæ°ããããŒã¿ãžã®äžè¬åèœåã倱ã£ãŠããŸãçŸè±¡ã§ãããã©ã³ã¹ã®ãšããã¢ãã«ãæ§ç¯ããã«ã¯ã該åœåéã®å°éç¥èãæ±ããããŸãã
æåŸã«ãèšç·Žããã»ã¹ã®å¹çåãææŠã®äžã€ã§ããGPUãªã©ã®é«æ§èœã³ã³ãã¥ãŒãã£ã³ã°ãªãœãŒã¹ã®å©çšãããã¬ãŒãã³ã°ããã»ã¹ãæé©åããã¢ã«ãŽãªãºã ã®éçºãè¡ãããŠããŸãã
å質ãåäžãããææ³ãšãã¹ããã©ã¯ãã£ã¹
çæAIã¢ãã«ã®å質åäžã«ã¯ãæå 端ã®ææ³ãçšããããŸããããã«ã¯ãTransfer LearningãData Augmentationãªã©ããããŸãããããã®ææ³ã¯ãéãããããŒã¿ããã®åŠç¿ã匷åããã¢ãã«ã®æ§èœãæé©åããŸãã
ãŸããç¶ç¶çãªãã¹ããšè©äŸ¡ãè¡ãããšããå質ãä¿ã€äžã§éèŠã§ããå°é家ã«ããè©äŸ¡ããŒã ãã¢ãã«ã®åºåãç£æ»ããäžå ·åãæ¹åç¹ãç¹å®ããããã»ã¹ã¯ãå質åäžã®èŠãšãªããŸãã
ãã¹ããã©ã¯ãã£ã¹ãšããŠã¯ãèšèšæ®µéããç°å¢ã«äŸåããªãæ±çšçãªã¢ãã«æ§ç¯ãæããããŸããããã«ãããç°ãªãç°å¢ã«ãããŠãäžå®ã®æ§èœãç¶æããããšãå¯èœãšãªããŸãã
çæAIã¢ãã«ã®å®å šæ§ãšå«ç
çæAIã¢ãã«ãå©çšããäžã§ãå®å šæ§ãšå«çã¯åã£ãŠãåãé¢ããªãããŒãã§ããç¹ã«æ·±å»ãªåé¡ã«ãªãåŸãã®ãããã£ãŒããã§ã€ã¯ãšãã£ãæªçšäºäŸã§ãã
å«ççãªäœ¿ãæ¹ã確ä¿ããããã«ã¯ãéçºè ãå©çšè ã責任ããè¡åãåãããšãäžå¯æ¬ ã§ããAIã®ã¬ã€ãã©ã€ã³ãããªã·ãŒã®å¶å®ãç©æ¥µçã«è¡ãããŠãããå®å šãªå©çšãæ±ããããŠããŸãã
æåŸã«ãæè²ãšæ å ±æäŸãå®å šæ§ãšå«çãå®ãäžã§å€§åã§ããå©çšè ãæè¡ã®è¯ãæªããç解ããé©åã«å€æã§ããç¥èãæã€ããšã§ãçæAIã¢ãã«ã®ããžãã£ããªå©çšãä¿é²ãããã§ãããã
5. çæAIã¢ãã«ã®éçºãšå®è£
æè¿ã®æè¡ã®é²æ©ã«ãããçæAIã¢ãã«ã®éèŠæ§ãé«ãŸã£ãŠããŸãããããã®ã¢ãã«ã¯ãæ°ããããŒã¿ãçæããããšã«ãã£ãŠå€ãã®ç£æ¥ã«å€é©ããããããŠããããã®éçºãšå®è£ ã¯æè¡è ã«ãšã£ãŠèå³æ·±ãåéãšãªã£ãŠããŸããèšããŸã§ããªãããã®ããã»ã¹ã¯è€éã§å°éç¥èãèŠæ±ãããŸãã
ãã®èšäºã§ã¯ãçæAIã¢ãã«ãéçºããéã«éµå®ãã¹ã段éçãªã¬ã€ãã䜿çšãããäž»èŠãªããŒã«ãšãã¬ãŒã ã¯ãŒã¯ãéçºè ãçŽé¢ããã¡ãªèª²é¡ãšãããã®è§£æ±ºçãããã«ã¯ã¢ãã«ã®ãããã€ã¡ã³ããšç¶æ管çã«ã€ããŠè©³ãã解説ããŸãã
å®çšçã§ãšã¬ã¬ã³ããªçæAIã®éçºã«åããŠãéèŠãªæ å ±ãæäŸããŸãã®ã§ããèå³ã®ããæ¹ã¯æ¯éãšãèªã¿é²ããŠãã ããã
çæã¢ãã«ãéçºããéã®ã¹ããããã€ã¹ãããã¬ã€ã
çæã¢ãã«ã®éçºã¯ãå®çŸ©ãããé åºã«åŸã£ãŠè¡ãããšãçæ³çã§ããæåã®ã¹ãããã¯ãç®çã®ããŒã¿ã¢ãã«ã粟確ã«ç解ããã¢ãã«ã«å¿ èŠãªããŒã¿ã»ãããåéããããšã§ããããã§ã®ããŒã¿ã®è³ªãšå€æ§æ§ããçæã¢ãã«ã®å質ã決å®ã¥ããŸãã
次ã«ãã¢ãã«ã®ã¢ãŒããã¯ãã£ãèšèšãã段éããããŸããããã«ã¯ãã©ã®çš®é¡ã®çæã¢ãã«ãæé©ãïŒGANsãVAEsãçïŒãã¢ãã«ã®è€éãããã¥ãŒãã³ã®å±€ã®æ°ãªã©ã決ããããšãå«ãŸããŸãã
æçµçã«ãçæã¢ãã«ããã¬ãŒãã³ã°ãããã¹ãããŒã¿ãçšããŠã¢ãã«ã®ããã©ãŒãã³ã¹ãè©äŸ¡ããŸããããã§ã®ç®çã¯ãå®äžçã§åœ¹ç«ã€è³ªã®é«ãããŒã¿ãçæããèœåãæã€ã¢ãã«ãæ§ç¯ããããšã§ãã
å®è£ ã«ãããäž»èŠãªããŒã«ãšãã¬ãŒã ã¯ãŒã¯
çæã¢ãã«ã®å®è£ ã«ã¯ãå€çš®å€æ§ãªããŒã«ãšãã¬ãŒã ã¯ãŒã¯ãå©çšãããŸããTensorFlowãšPyTorchã¯ãæãåºã䜿ãããŠãããªãŒãã³ãœãŒã¹ã®æ©æ¢°åŠç¿ã©ã€ãã©ãªã§ãããéåžžã«é«åºŠãªçæã¢ãã«ã®éçºã«ã察å¿ããŠããŸãã
KerasããŸããTensorFlowäžã§åäœããé«ã¬ãã«ã®APIãæäŸããŠãããåå¿è ã«ãæ±ããããæ§é ãšãªã£ãŠããŸãããŠãŒã¶ãŒãã¬ã³ããªãŒãªAPIã¯ãè€éãªã¢ãã«ã®ãããã¿ã€ãã³ã°ãå®éšãè¿ éã«è¡ãã®ã«åœ¹ç«ã¡ãŸãã
ãã®ä»ã«ããJupyter Notebookã®ãããªã€ã³ã¿ã©ã¯ãã£ããªéçºç°å¢ããçæã¢ãã«ã®éçºããã»ã¹ã«ãããŠæåãªããŒã«ã§ãããããã¯ãã³ãŒãã£ã³ã°ãšçµæã®ç¢ºèªãåæã«è¡ãã調æŽãç°¡åã§ãã
éçºè ãééããäžè¬çãªèª²é¡ãšè§£æ±ºç
çæã¢ãã«ã®éçºã¯ææŠçã§ãããå€ãã®æè¡çãªé害ãååšããŸããäŸãã°ãã¢ãã«ã®åæã«é¢ããåé¡ã¯ãç¹ã«GANsã®èšç·Žã«ãããŠäžè¬çã§ãããã®åé¡ã«ã¯ãæ倱é¢æ°ã®éžæã調æŽããããšãããã¥ãŒã©ã«ãããã¯ãŒã¯ã®ã¢ãŒããã¯ãã£ãæ¹åããããšã§å¯ŸåŠã§ããŸãã
ãªãŒããŒãã£ããã£ã³ã°ã¯å¥ã®äžè¬çãªåé¡ã§ãããã¢ãã«ãèšç·ŽããŒã¿ã«éå°ã«æé©åãããããšãæå³ããŸãããããåé¿ããããã«ã¯ãé©åãªæ£ååææ³ã®é©çšããããŒã¿æ¡åŒµã®äœ¿çšãå¹æçã§ãã
ããã«ãããŒã¿ã»ããã®å質ãå€æ§æ§ã®äžè¶³ããçæã¢ãã«ã«ãšã£ãŠã®å€§ããªèª²é¡ã§ããäºååŠçã¹ããããäžå¯§ã«è¡ãããšããå ã®ããŒã¿ã»ããã«è¿œå ããŒã¿ãéããããšãæå¹ãªè§£æ±ºçãšãªãããŸãã
çæAIã¢ãã«ã®ãããã€ã¡ã³ããšç¶æ管ç
çæã¢ãã«ããããã€ããéã«ã¯ãã¢ãã«ãå®å®ããŠçšŒåããç°å¢ã確ä¿ãããŠããããšãéèŠã§ããã¯ã©ãŠããµãŒãã¹ãå°çšã®ãµãŒããŒããã¢ãã«ããããã€ããããã®äžè¬çãªéžæè¢ãšãªã£ãŠããŸãã
ãããã€åŸã¯ãã¢ãã«ã®ç¶ç¶çãªç£èŠãšã¡ã³ããã³ã¹ãå¿ èŠãšãªããŸããããã«ã¯ãå®æçãªããã©ãŒãã³ã¹è©äŸ¡ãããŒã¿ã®åéãšæŽæ°ãããã«ã¯ã¢ãã«ã®åèšç·Žãå«ãŸããå ŽåããããŸãã
ãŸããçæã¢ãã«ã¯å Žåã«ãã£ãŠã¯æ©å¯æ§ã®é«ãããŒã¿ãæ±ãããšããããŸãã®ã§ãã»ãã¥ãªãã£å¯Ÿçãååã«èæ ®ãããã¹ãã§ããããŒã¿ä¿è·èŠå¶ã«æºæ ããã·ã¹ãã ã®è匱æ§ã«å¯ŸããŠé©åãªé²åŸ¡ãæœãããšãæ±ããããŸãã
6. ææ°ã®çæAIã¢ãã«ãšãã®åéã§ã®é²å±
è¿å¹Žã人工ç¥èœæè¡ã®é£èºãæ¯ããåãšããŠãçæAIã¢ãã«ãã泚ç®ãããŠããŸããå¹ åºãåéã§æŽ»èºãããããã®ã¢ãã«ã¯ãåçŽãªããŒã¿è§£æãè¶ ããŠãåµé çãªäœæ¥ã«ãå¿çšãããŠããŸãã
åçæAIã¢ãã«ã¯ç°ãªãã¿ã¹ã¯ã«ç¹åããŠããã人éã®åœ¹ã«ç«ã€æ å ±ãææãåµåºããããšãæåŸ ãããŠããŸããå»çãèžè¡ãã²ãŒã éçºãªã©ãå€å²ã«ãããç£æ¥ããã®æè¡ã®æ©æµãåãå§ããŠããŸãã
ãã®èšäºã§ã¯ãçæAIã¢ãã«ãããããå¯èœæ§ãšãå ·äœçãªé²å±ã«ã€ããŠæ¢æ±ããŸããç¹ã«ãã®ææ°ã®ååã«çŠç¹ãåœãŠã€ã€ãèå³æ·±ãç 究ãããã¯ãå°æ¥çãªããžã§ã³ã«é¢ããæŽå¯ãæäŸããŸãã
泚ç®ãéããææ°çæAIã¢ãã«çŽ¹ä»
æå 端ã®çæAIã¢ãã«ã¯ãèªç¶èšèªåŠçãç»åçæã®åéã§ç¹ã«å€§ããªé²æ©ãèŠããŠããŸãããããã®ã¢ãã«ã¯ãããã¹ããç»åãªã©ã®ããŒã¿ããæ°ããªã³ã³ãã³ããçæã§ããèœåãæããŠããŸãã
æç« çæãåŸæãšããAIã¢ãã«ã¯ãçŸåšãžã£ãŒããªãºã ãã³ã³ãã³ãå¶äœã«ãããå¹çã®å€§å¹ ãªåäžã«å¯äžããŠããŸãããã£ãŒãã©ãŒãã³ã°ã«åºã¥ããã®åŠç¿ã¢ã«ãŽãªãºã ã¯ãèšå€§ãªããã¹ãããŒã¿ããæèãç解ããèªç¶ã«èªããããã¹ããçæããŸãã
äžæ¹ãç»åçæåéã§ã¯ãå®äžçã®åçããã€ã³ã¹ãã¬ãŒã·ã§ã³ãåããåµäœç©ãçã¿åºãã¢ãã«ãªã©ãç»å ŽããŠããŸããããã«ããããã¶ã€ã³ç£æ¥ãåºåæ¥çã§ã®ç»åå¶äœãäžå€ããå¯èœæ§ããããŸãã
ç£æ¥ã«é©æ°ãããããçæAIã®äºäŸ
çæAIã¢ãã«ã¯ã³ã³ãã¥ãŒã¿ã°ã©ãã£ãã¯ã¹ãã¢ãã¡ãŒã·ã§ã³ã®åéã§ç¹ã«éèŠãªåœ¹å²ãæãããŠãããšèšããŸããã€ã©ã¹ãã¬ãŒã¿ãŒãæ åå¶äœè ã¯AIãé§äœ¿ããåµé ã®ããã»ã¹ãé«éåããŠããŸãã
æŽã«ã補åèšèšã建ç¯èšèšã«ãããŠãçæAIã¯ãç¡éã®å¯èœæ§ãæäŸããŠããŸããææã®ç¹æ§ãèšèšã®å¶çŽãèžãŸããŠãæé©ãªãã©ãŒã ãæ§é ãAIãææ¡ããæ代ãå°æ¥ããŠããŸãã
ãŸããå»çåéã§ã¯ãAIãæ°ããè¬ç©ã®ååæ§é ãçæããããçŸæ£ã®æ©æçºèŠã«åœ¹ç«ã€ç»å蚺æããµããŒããããããŠããŸããçæAIã¯åãªãã¢ã·ã¹ã¿ã³ããè¶ ããŠæ°ããªå¯èœæ§ãåãéããŠãããåç£æ¥ã«ãããã€ãããŒã·ã§ã³ã®æºæ³ãšãªã£ãŠããŸãã
ç 究é åã§ã®ææ°ãã¬ã³ããšç 究ãããã¯
ææ°ã®ç 究ã§ã¯ãçæAIã¢ãã«ã¯ããè€éã§ç²Ÿç·»ãªã¿ã¹ã¯ãããªãæ¹åã«é²åããŠããŸããç¹ã«æ³šç®ãããã®ã¯ãå æé¢ä¿ã®æšè«ãç©çæ³åã«åºã¥ããã·ãã¥ã¬ãŒã·ã§ã³ã®ç²ŸåºŠåäžã§ãã
ãŸããçæã¢ãã«ã®èª¬æå¯èœæ§ã«å¯Ÿããç 究ãé²ãã§ãããã¢ãã«ãçã¿åºãåºåã®èæ¯ã«ããçç±ãæããã«ããããšãæ±ããããŠããŸããããã«ãããAIã®åºãçµæã®ä¿¡é Œæ§ãé«ãŸããŸãã
ç 究ãããã¯ãšããŠã¯ãæåž«ãªãåŠç¿ã匷ååŠç¿ãå©çšããçæã¢ãã«ã®éçºã掻çºã«è¡ãããŠããŸãããããã¯AIã®èªåŸæ§ãé«ããæªç¥ã®é åã«ãããåµé ãå¯èœã«ããŠããããããããŸããã
å°æ¥æ§ïŒæ¬¡äžä»£ã®çæAIã¢ãã«ãžã®æåŸ
å°æ¥ã®çæAIã¢ãã«ã«å¯ŸããæåŸ ã¯éåžžã«å€§ããã§ãããããã®ã¢ãã«ã¯äººéã®åµé æ§ã«æ°ããªæ¬¡å ããããããç§ãã¡ãæ³åããããŠããªãæ°ããã¢ãŒããã€ãããŒã·ã§ã³ãçããããããŸããã
ãŸãããšãã«ã®ãŒãç°å¢åé¡ãžã®å¿çšã泚ç®ãããŠãããæç¶å¯èœãªéçºç®æšïŒSDGsïŒéæã«åããæ°ãããœãªã¥ãŒã·ã§ã³ãAIãåµåºããããšã«ã倧ããªæåŸ ãå¯ããããŠããŸãã
次äžä»£ã®AIã¯ããé«åºŠãªèªå·±åŠç¿èœåãšæ±çšæ§ãæã¡ã人éã®åãæ¡åŒµããããŒãããŒãšããŠæŽ»èºããããšã§ããããé©æ°çãªæè¡ãšããŠã®çæAIã®å°å¹³ã¯ããããããç®ãé¢ããªãé²åãéãç¶ããã«éããããŸããã